
342 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

front in the objective space, which all follow two basic steps it-
eratively: variation and selection. Variation consists of choosing
some solutions from the existing (maybe random) solutions to
be combined and produce new ones. Then, selection is per-
formed to keep the good solutions and discard the bad ones.
Different ways for selecting the best solutions and storing them
have been proposed in the literature. In this study, to solve the
formulated CMOP, we first develop an evolutionary algorithm,
called LSEA, to retrieve a set of Pareto-optimal solutions and
show the trade-offs between energy consumption cost and the
utility. Then, in order to further improve the algorithm effi-
ciency, we present an -approximate evolutionary algorithm,
called -LSEA, to obtain -Pareto fronts of the objective space.
Extensive simulations have also been conducted to evaluate the
performance of the two proposed algorithms.

The rest of this paper is organized as follows. Section II
introduces system models considered in this study. We de-
scribe the constrained multi-objective optimization problem in
Section III. Section IV details the proposed evolutionary algo-
rithms for solving the CMOP. Simulation results are presented
in Section V. Finally, we conclude this paper in Section VI.

II. SYSTEM MODEL

In this section, we briefly describe smart grids, and energy
cost model and utility function model in smart grids.

A. Smart Grids

Smart grids have been promoted by many governments as
a way of addressing energy independence and sustainability,
global warming, and emergency resilience issues [12]. In smart
grids, the energy consumption of each user is monitored by
a smart meter (SM), which is also capable of controlling the
user’s appliances (e.g., turning them on or off, adjusting their
settings). Due to their communication capability, SMs also en-
able two-way communications between users and utility com-
panies, via multihop wireless, wired, or hybrid networks.

In this study, we consider a third-party managing the energy
consumption of a group of smart grid users. Each user submits
its energy request to the third-party, e.g., 2 kilowatt-hour (kWh)
between 10:00 and 18:00, before a day starts (0:00). Then, the
third party optimally schedules all users’ energy consumption
(either locally or via cloud computing) so that its objectives can
be satisfied, which are first, to minimize the total energy con-
sumption cost, and second, to maximize its utility measured by
a certain utility function. For example, this third party can be a
company, who schedules its departments’ energy consumption
in order to minimize the cost and maximize its gross income.
The third party can also be a community manager, who sched-
ules the residents’ energy consumption so that the total energy
cost is minimized and its utility (e.g., life comfortness living in
this community) is maximized.

B. Energy Cost Model

We discretize a day into time slots of equal length, which
are denoted by a set . A complete energy consumption
schedule for user during one day is given by a vector

, where is user ’s energy consump-
tion in the th time slot, and , i.e., user ’s
required energy consumption during one day. Then, the total
energy consumption of all users in time slot ,
denoted by , is

where is the cardinality of the set , i.e., the number
of users in this area.

Besides, we assume that the energy price functions are known
to the third party. One example for such a price function is given
below:

where is the total energy consumption of all users, and
are non-negative coefficients, and is a upper bound on

the energy consumption for this price function to hold.
Furthermore, in practice, the energy price function may be

piecewise. In this paper, we consider a two-piece price function
without loss of generality, which is composed of two functions
denoted by and , respectively. Assume that and

, i.e., the energy price increases even faster once the
energy consumption exceeds a certain threshold. Consequently,
the overall cost function of consuming energy, denoted by

, is shown in the equation at the bottom of the page,
where accounts for a marginal cost. Notice that when
the total energy consumption exceeds a certain threshold, i.e.,

, the cost goes to infinity. It means that
the third party is only allowed to use this much energy (i.e.,

) at most, which could be a constraint to ensure
the stability of the neighboring areas considered from the whole
grid perspective.

C. Utility Function Model

In addition to low cost, the third party also intends to achieve
high utility, which is calculated by a utility function. As men-
tioned before, the utility could be a company’s gross income,
or a community’s living comfort, and so on. Usually, the utility
functions are non-decreasing with respect to the consumed
power, concave, and results in a zero utility value given zero
power consumption [4]. For simplicity, we use the following
utility function, denoted by , in this study:

(1)

SALINAS et al.: MULTI-OBJECTIVE OPTIMAL ENERGY CONSUMPTION SCHEDULING IN SMART GRIDS 343

where is the total energy consumption of all the users. Note
that the utility value may not have the same unit as the energy
cost.

III. CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION PROBLEM

FORMULATION

In general, a constrained multi-objective optimization
problem (CMOP) is defined as follows [13]:

where is the set of objective functions, is the set of
inequality constraints, is the set of equality constraints,
and and are the minimum and maximum values of each
decision variable , respectively. A CMOP minimizes ob-
jective functions simultaneously, where the objective functions
represent (usually) competing or conflicting objectives.

In this study, we consider two objective functions, and for-
mulate a CMOP as follows:

(2)

(3)

(4)

(5)

In the above CMOP, the first objective function minimizes the
total energy generation cost during one day, and the second
objective function maximizes the utility function. Constraint
(2) guarantees that in each time slot the total energy consump-
tion does not exceed the maximum generation capacity of the
system. Constraint (3) indicates that each user has certain en-
ergy demand which needs to be satisfied between a required
starting time and a required stopping time . Constraint
(4) represents a user’ tolerance of its daily energy consumption,
i.e., the user is fine with consuming to energy
in one day. Constraint (5) simply means that the starting time
is no later than the stopping time for each user, which are both
between time slots 1 and .

IV. SOLVING CMOPS BY EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) have been proven to be effec-
tive in finding good approximations of CMOPs’ optimal solu-
tions. The basic idea is to use the crossover, mutation and selec-
tion principles of Darwinian evolution to combine, modify and
choose possible solutions iteratively until a good approxima-
tion of the optimal solution to a CMOP is found. Specifically,
crossover and mutation are probabilistic procedures that com-
bine solutions in order to make (possibly better) new solutions.
Selection is a deterministic procedure that discards the bad so-
lutions found so far and keeps the good ones. Besides, selection

procedures are based on the solutions’ fitness, which is usually
assigned by an EA based on Pareto dominance and the distance
to its nearest neighbors in the objective space. Before we dive
into the details, we give some definitions as follows.

DeÞnition 1: In a CMOP, a solution vector is said to Pareto
dominate another solution vector , if for all

and there exists some such that ,
where is the dimension of the solution vectors.

EAs are usually applied to unconstrained optimization prob-
lems. Some different penalty functions and definitions of domi-
nance have been proposed in the literature to handle constraints.
Penalty functions are functions of the infeasibility of a solution,
where larger values are assigned to solutions farther away from
the feasible space of the problem while smaller values are as-
signed to solutions closer to the feasible space. In this paper, we
adopt the dominance definition given by Deb et al. [6], which
takes constraints into consideration and is described below.

DeÞnition 2: A solution vector is said to constraint-domi-
nate another solution vector if any of the following
conditions is true:

1) is feasible but is not.
2) Both and are feasible and Pareto dominates , as

defined in Definition 1.
3) Both and are infeasible, but has lower overall con-

straint violation.
After an EA is executed, several non-dominated solutions, in

the Pareto sense, are obtained. Each of these solutions is a com-
promise between the multiple objective functions. In what fol-
lows, we first propose an evolutionary algorithm to find Pareto
optimal solutions to the load scheduling problem formulated in
Section III, and then develop an -approximate evolutionary al-
gorithm to obtain -Pareto fronts of the solutions.

A. Load Scheduling With an Evolutionary Algorithm (LSEA)

An evolutionary algorithm is usually composed of several im-
portant processes, including initialization, selection, crossover,
and mutation. In the following, we describe such processes, re-
spectively.

In the beginning, random solutions, called individuals, are
created to form the initial population . The initial individ-
uals satisfy constraints (3)–(5) but may not meet constraint (2).
Next, all individuals are compared to each other using the con-
straint-dominance definition (Definition 2) and each individual
is assigned a rank according to the number of individuals by
which it is dominated. For example, non-dominated individuals
receive a rank of 1, individuals dominated by only one indi-
vidual receive a rank of 2, and so on. Individuals with the same
rank form a front. Besides, a crowding distance [6] is assigned
to each individual within the same front. The crowding distance
is a measure of how close an individual is to other individuals in
the objective space, where a larger crowding distance indicates
the individual is farther away from other individuals. Specifi-
cally, crowding distance is computed in steps, where is
the objective space dimensionality. In each dimension , the
individuals are sorted according to their th objective value.
Then, we obtain for each individual the aggregate distance to
its two adjacent neighbors with respect to the th objective. The
first and last individuals in each dimension are assigned a
crowding distance of to preserve diversity. Finally, an in-
dividual’s crowding distance is calculated as its total aggregate

344 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

distances in all dimensions. Please refer to Function 1 for more
details.

Function 1 Crowding Distance Assignment

Input: Individuals ’s in front , objective space dimension

1: Calculate for each individual the objective values
in the objective space

2: Set to 0 for each individual

3: for to do

4: Sort individuals ’s in in ascending order according
to

5: The crowding distance of the first and of the last individual
are set to infinity

6: for to the size of minus 1 do

7:

8: end for

9: end for

Output: Crowding distances ’s

Once all individuals are assigned a rank and crowding dis-
tance, the next step is to select some individuals from , to
create a mating pool for crossover and mutation. The selection
is done using binary tournament, i.e., randomly selecting two
individuals from and comparing their ranks. The individual
with the smaller rank will be selected for the mating pool. If
the two individuals have the same rank, then the one with larger
crowding distance is selected. If both individuals have the same
rank and the same crowding distance, then either one is selected
with a probability of 0.5. After the mating pool is filled, the
crossover process starts. Each time two random individuals are
taken from the mating pool, called parents, to create two more
individuals, called offsprings, with probability . Then, the off-
spring are mutated with probability . Usually, is large and

is small. After offspring individuals have been created,
they are grouped in .

The th iteration will start by creating an aggregated
population . Then all individuals in popu-
lation will be assigned a rank and crowding distance. Indi-
viduals with rank 1 are added to . Recall has a fixed size
of . If there are less than individuals with rank 1, all in-
dividuals with rank 1 will be added to the new population .
To fill in the remaining spots in individuals with rank 2 are
considered, and so on. When the last front is considered, and its
size is larger than the remaining spots, individuals with larger
crowding distances will be included in . All other individuals
are discarded. Finally, a new offspring population is created by
selecting individuals from for the mating pool, as described
previously, and performing crossover and mutation. When the
number of iterations reaches a predefined threshold, say , the
algorithm stops and the non-dominated individuals can be ex-
tracted from to form a Pareto-front.

Notice that the above description does not specify how to
conduct crossover and mutation. Next, we introduce these two
processes, respectively. In particular, we adopt the simulated
binary crossover (SBX) [14] scheme for the crossover process.

This procedure creates two offsprings, and , from two parents
and as follows. For any , , we get

where and are the elements of vectors and , respec-
tively, and are the elements of vectors and , respec-
tively, and is a sample generated by a random number gen-
erator shown below:

where is a random variable uniformly distributed in [0,1], and
is a predefined parameter.
Besides, we perform the mutation process shown in the fol-

lowing. For any , , we have

(6)

where is uniformly distributed between 0 and 1.
In the case that the th decision variable of an offspring after

crossover and mutation fall outside the lower and upper bounds
specified in the CMOP constraints, they are reset as follows:

We further detail the evolutionary algorithm for load sched-
uling in Algorithm 1, which is called LSEA.

Algorithm 1 Load Scheduling with an EA (LSEA)

Input:
1: Create an random initial population, of size , satisfying
constraints (3)–(5) in the CMOP
2: Apply non-dominating sorting to
3: Apply binary tournament to to fill mating pool
4: Crossover individuals in mating pool to fill offspring set
5: Apply mutation to
6: Set the maximum number of generations,
7: for to do
8:
9: Apply non-dominating sorting to
10: Apply binary tournament to to fill mating pool
11: Apply crossover to individuals in mating pool to generate

12: Apply mutation to individuals in
13: Create
14: end for
Output: Non-dominated individuals in

B. Load Scheduling With an -Approximate Evolutionary
Algorithm (-LSEA)

The evolutionary algorithm proposed above provides a dense
and diverse set of solutions on the Pareto front (i.e., the Pareto

346 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

Fig. 1. Pareto front for 5, 15, 25, and 50 users respectively, using LSEA. (a) 5 users; (b) 15 users; (c) 25 users; (d) 50 users.

Fig. 2. -Pareto front for 5, 15, 25, 50 users, respectively, using -LSEA. (a) 5 users; (b) 15 users; (c) 25 users; (d) 50 users.

7: Replace the with the smallest with offspring (or
break ties randomly).
8: end if
Output:

Our population acceptance mechanism, detailed in Procedure
2, uses dominance relations and crowding distances to accept an
offspring into the population or reject it. In particular, the algo-
rithm works as follows. First, a crowding distance is assigned to
each population individual in using Function 1. Next, it
is determined if offspring dominates any . If it does, the al-
gorithm replaces the dominated that has the lowest crowding
distance with . In case is dominated by any , it is re-
jected. On the other hand, if does not dominate any and it
is also non-dominated, the with the lowest among all in-
dividuals in is replaced by . If several individuals have
the same lowest , then a randomly chosen one is replaced
by . Finally, the procedure returns the updated population .
Notice that this procedure only compares the offspring with all
members of the population , rather than compare it with all
members of the whole population as in Algorithm 1. This keeps
the computational cost low, and the use of crowding distances
maintains a well spread population.

Finally, we describe in details the -approximate evolutionary
algorithm (-LSEA) for the load scheduling problem in Algo-
rithm 2. Initially, a random population is created satisfying
constraints (3)–(5) specified in the CMOP. Then, the non-dom-
inated individuals in are copied into archive . In the th
iteration, an individual is randomly selected from the popu-
lation using binary tournament and another solution is
randomly chosen from the archive to form the mating pool.
The parent individuals, and , are used for crossover, and the
resulting offspring is subject to mutation. Unlike that in the
previous algorithm, only one offspring is generated per iter-
ation. Next, offspring is accepted or rejected from the popu-
lation using Procedure 2. Lastly, Algorithm 1 is used to decide
whether or not offspring is added into the archive . The algo-

TABLE III
COMPLETION TIME

rithm stops after a predefined number of offsprings have been
generated. Since fewer solutions are needed to converge to the
Pareto-front, this algorithm has a shorter computation time than
Algorithm 1.

Algorithm 2 Load Scheduling with an -Approximate EA
(-LSEA)

1: Create a random initial population, of size , satisfying
constraints (3)–(5) in the CMOP
2: Copy non-dominated individuals in to
3: for to do
4: Choose a solution from using binary tournament,
and a solution from at random
5: Use and as parents to create one offspring .
6: Apply mutation to resulting in
7: Run Procedure 2 to decide if is included in population

8: Run Procedure 1 to decide if is included in the achieve
9: end for

Output: -Pareto fronts in

V. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the per-
formance of the proposed two algorithms, i.e., Load Sched-
uling with an EA (LSEA, Algorithm 1) and Load Scheduling

